Polygonum cuspidatum, known by the common name Japanese
knotweed, is a tall, stout herbaceous perennial (Seiger, 2005) and is a
member of the Polygonaceae (Seiger, 2005). In China it is
referred to as Hu Zhanz.
Japanese knotweed is also known under the scientific names Fallopia japonica and Reynoutria japonica. The
leaves are alternately arranged and are oval with pointed tips and a
truncate base. They measure approximately 15 cm long by 7.5-10 cm
wide (Remaley, 2005). Clusters of tiny white flowers are produced
in the late summer, though reproduction is generally through rhizome
rather than seed production (Weston et al, 2005). Knotweed is native of
China, North and South Korea as well as Japan (Seiger, 2005). Outside
of its point of origin, Japanese knotweed was introduced as an
ornamental plant Remaley, 2005). It is widely distributed across
the United States and Canada and is found especially along
rivers. It has become established as an invasive species across
Eastern Europe, Great Britain and parts of the United States (Seiger,
in 1997) including Massachusetts, Connecticut, and California (USDA,
2009).
Because of its presence in China, it has been mainly used primarily in
Traditional Chinese Medicine as well as in Asian cultures. The rhizome
has been used as an anti-inflammatory, anti-tussitive, diuretic,
emmenagogue, emollient, febrifuge, stomachic (Duke & Ayensu, 1985;
Usher, 1974). Extracts of the plant have shown antitumor activity
within Traditional Chinese Medicine (Duke & Ayensu, 1985).
Japanese knotweed contains compounds that are part of a group of
organic chemicals called stilbenes, which are polyphenolic compounds
attached by an ethylene (Vastano et al., 2000). The specific
composition is dependent on the side chains. One common stilbene
found in Japanese knotweed is resveratrol, which is
3,5,4'-Trihydroxystilbene. Resveratrol has two isomers: cis and trans,
with the latter being the most abundant. Piceid, also known
polydatin, is a glucoside form of resveratrol found in Japanese
knotweed. Emodin is an anthraquinone derivative that occurs in
extracts of knotweed (Vastano et al., 2000) and other plant species.
Resveratrol has been shown to have numerous effects, as assessed both in vitro and in vivo. It decreases the
viscosity of the blood and act as anticoagulant to thin blood.
Human blood was used for in vitro
analysis, while rabbits were used for in
vivo analysis. This study showed that this property of
resveratrol allows it to be effective in treating cardiovascular
disease by reducing thrombosis and embolisms that can block arteries
and lead to myocardial and cerebral infarctions (Wang et. al,
2002). Resveratrol was successfully able to decrease platelet
aggregation in patients that were resistant to aspirin. This in vitro study showed that
resveratrol could be used to help treat these high risk vascular
patients (Gyorgyi, 2006).
Resveratrol can also provide inflammation relief when used in
therapeutically effective amounts and combined with Devil's claw,
grapeskin, and syzygium (Charters et al, 2003). Research shows
that extracts from P. cuspidatum
inhibits inflammation in mouse ears in response to a topical
application of 12-O- tetradecanoylphorbol-13-acetate (TPA) by
inhibiting the development of edema and neutrophil infiltration, which
is an essential part of the immune response. The extract at the
doses of 2.5, 1.25, and 0.3 milligrams was found to be as effective as
indomethacin, a non-steroidal anti-inflammatory drug, at reducing edema
(Bralley et. al, 2008). Edema can lead to more serious
complications such as congestive heart failure, so any alleviation is
beneficial.
Resveratrol has been found to reduce the tumor volume, tumor weight,
and lung metastasis at doses of 2.5 and 10 mg/kg in mice with highly
metastatic lung carcinoma (LLC) tumors (Kimura, 2001). The inhibitory
effects could not be explained by a natural killer or cytotoxic
T-lymphocyte activation. Research suggests that the anti-tumor
activities of resveratrol could be caused by the inhibition of DNA
synthesis in LLC cells (Kimura, 2001). High doses of resveratrol
have also been shown to inhibit cyclooxygenase expression in human
uterine cancer cells in vitro. Cyclooxygenase is over expressed
in endometrial cancer cells and makes these cells resistance to
apoptosis (Sexton, 2006). Resveratrol caused apoptosis in five
out of the six cell lines used by inhibiting the cyclooxygenase
protein. Breast cancer metastasis was slowed down using human
cell cultures with high doses of resveratrol by inhibiting lamellipodia
extension (Azios, 2009). This property of resveratrol makes it a
potential preventative agent of breast cancer. Low doses,
however, have shown to increase metastasis and migration (Azios,
2009).
Resveratrol is a phytoestrogen and acts as an agonist to estrogen
receptors in the body. Resveratrol has been shown to inhibit
estradiol by binding to the estrogen receptors in vitro and activate
the transcription reporter cells that are characteristic of the
estrogen response (Gehm, 1997). An in vivo study conducted on
rats show that there is no agonism to estrogen receptors on various
target tissues, and has been shown to be an estrogen antagonist by not
allowing estrogen to lower cholesterol (Turner
1999).
Many different doses of trans-resveratrol are available commercially,
ranging from 20mg to 500mg. Cis-resveratrol is not commercially
available because of little research on the effectiveness of the
compound (Orallo, 2006). Japanese knotweed is included in several
herbal preparations that contain other plants that have shown
therapeutic success. One of these compositions is an herbal for
alleviating menstrual discomfort, comprising therapeutically effective
amounts of Japanese knotweed, chaste tree berry, Mexican wild yam,
dandelion, Devil's claw, grapeskin, and syzygium (Charters et al,
2003). Another herbal composition is used for soothing muscles
and joints, comprising of therapeutically effective amounts of Japanese
knotweed, N-acetyl D-glucosamine, chondroitin sulfate, D-glucosamine
hydrochloride, methylsulfonylmethane, grapeskin, syzygium, and Devil's
claw (Charters et al, 2003). No severe adverse reactions have
been identified even when taken in large doses (Udenigwe, 2008).
Other compounds found in Japanese knotweed, including polydatin
(piceid) and emodin have been examined for their therapeutic
value. Standard preparations of polydatin include 5, 10, and 25
mg tablets. Studies have shown that polydatin has lipid-lowering
effect in hamsters (Du, et. al, 2009) and in rabbits (Xing, et. al,
2008). The results from the clinical trials suggest that
polydatin has the potential to develop a hypolipemic agent to reduce
lipid composition in the blood and/or to serve as a hepatoprotective
drug.
Emodin has been shown to selectively inhibit casein kinase II by
working as a competitive inhibitor against ATP. Casein kinase II,
a ser/thr protein kinase, is an important enzyme in signal transduction
pathways in cell proliferation and differentiation (Yim, 1999).
Inhibiting this kinase would stop the transduction of the signal and
the pathway would stop.
Polygonum cuspidatum has many
different positive medicinal uses, mainly from the stilbene compound,
resveratrol, and its derivatives. Severe side effects directly from the
derivatives of the plant, which are unknown, make it a useful herbal
remedy. The various research investigations on Japanese knotweed
had a common thread of helping treat common ailments, such as
decreasing cardiovascular disease and as an anticancer agent. These
treatments can ultimately lead to an extended lifespan, which other
research suggests (Valenzano et al, 2006).
Return to Plant Summaries page